Dynamics of self-propelled particles under strong confinement
نویسندگان
چکیده
منابع مشابه
The collective dynamics of self - propelled particles
We have proposed a method for the dynamic simulation of a collection of self-propelled particles in a viscous Newtonian fluid. We restrict attention to particles whose size and velocity are small enough that the fluid motion is in the creeping flow regime. We have proposed a simple model for a self-propelled particle, and extended the Stokesian Dynamics method to conduct dynamic simulations of ...
متن کاملCollective dynamics of self-propelled particles with variable speed.
Understanding the organization of collective motion in biological systems is an ongoing challenge. In this paper we consider a minimal model of self-propelled particles with variable speed. Inspired by experimental data from schooling fish, we introduce a power-law dependency of the speed of each particle on the degree of polarization order in its neighborhood. We derive analytically a coarse-g...
متن کاملThe nonequilibrium glassy dynamics of self-propelled particles.
We study the glassy dynamics taking place in dense assemblies of athermal active particles that are driven solely by a nonequilibrium self-propulsion mechanism. Active forces are modeled as an Ornstein-Uhlenbeck stochastic process, characterized by a persistence time and an effective temperature, and particles interact via a Lennard-Jones potential that yields well-studied glassy behavior in th...
متن کاملHydration-dependent dynamics of deeply cooled water under strong confinement.
We have measured the hydration-level dependence of the single-particle dynamics of water confined in the ordered mesoporous silica MCM-41. The dynamic crossover observed at full hydration is absent at monolayer hydration. The monolayer dynamics are significantly slower than those of water in a fully hydrated pore at ambient temperatures. At low temperatures, the opposite is found to be true. Th...
متن کاملSelf-Assembly of Heterogeneously Charged Particles under Confinement
Self-assembly--the spontaneous organization of microscopic units into well-defined mesoscopic structures--is a fundamental mechanism for a broad variety of nanotechnology applications in material science. The central role played by the anisotropy resulting from asymmetric shapes of the units and/or well-defined bonding sites on the particle surface has been widely investigated, highlighting the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Soft Matter
سال: 2014
ISSN: 1744-683X,1744-6848
DOI: 10.1039/c4sm00975d